Weyl Denominator Identity for Finite-dimensional Lie Superalgebras

نویسنده

  • MARIA GORELIK
چکیده

Weyl denominator identity for finite-dimensional Lie superalgebras conjectured by V. Kac and M. Wakimoto is proven.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

Denominator Identity for Affine Lie Superalgebras with Zero Dual Coxeter Number

0.1. Let g be a complex finite-dimensional contragredient Lie superalgebra. These algebras were classified by V. Kac in [K1] and the list (excluding Lie algebras) consists of four series: A(m|n), B(m|n), C(m), D(m|n) and the exceptional algebrasD(2, 1, a), F (4), G(3). The finite-dimensional contragredient Lie superalgebras with zero Killing form (or, equivalently, with dual Coxeter number equa...

متن کامل

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

Denominator formulas for Lie superalgebras ( extended abstract )

We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie superalgebra for a distinguished set of positive roots. Résumé. Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d’une superalgèbre de Lie basique classique pour un ensemble distingué de racines positives.

متن کامل

Weyl Denominator Identity for Affine Lie Superalgebras with Non-zero Dual Coxeter Number

Weyl denominator identity for the affinization of a basic Lie superalgebra with non-zero Killing form was formulated by V. Kac and M. Wakimoto and was proven by them for the defect one case. In this paper we prove this identity. 0. Introduction Let g be a basic Lie superalgebra with a non-zero Killing form. Let ĝ be the affinization of g. Let h (resp., ĥ) be the Cartan subalgebra in g (resp., i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009